An intelligent approach towards automatic shape modeling and object extraction from satellite images using cellular automata based algorithm

نویسندگان

  • P. V. Arun
  • Sunil Kumar Katiyar
چکیده

Automatic feature extraction domain has witnessed the application of many intelligent methodologies over past decade; however detection accuracy of these approaches were limited as object geometry and contextual knowledge were not given enough consideration. In this paper, we propose a frame work for accurate detection of features along with automatic interpolation, and interpretation by modeling feature shape as well as contextual knowledge using advanced techniques such as SVRF, Cellular Neural Network, Core set, and MACA. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the CNN approach. CNN has been effective in modeling different complex features effectively and complexity of the approach has been considerably reduced using corset optimization. The system has dynamically used spectral and spatial information for 1 Email : [email protected] representing contextual knowledge using CNN-prolog approach. System has been also proved to be effective in providing intelligent interpolation and interpretation of random features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

An evolutionary computational based approach towards automatic image registration

Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we p...

متن کامل

An enhanced neural network based approach towards object extraction

ABSTRACT The improvements in spectral and spatial resolution of the satellite images have facilitated the automatic extraction and identification of the features from satellite images and aerial photographs. An automatic object extraction method is presented for extracting and identifying the various objects from satellite images and the accuracy of the system is verified with regard to IRS sat...

متن کامل

Modeling Urban Sprawling of Tehran Metropolitan Area Based on PSO

The main goal of the present study was to implement a hybrid pattern of cellular automata model and particle swarm optimization algorithm based on TM and ETM+ imagery of landsat satellite from 1988 to 2010 for simulating the urban sprawling. In this study, an alternative model was implemented in two ways: the first method was based on two images (1988 and 2010) and the second one was based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.6711  شماره 

صفحات  -

تاریخ انتشار 2013